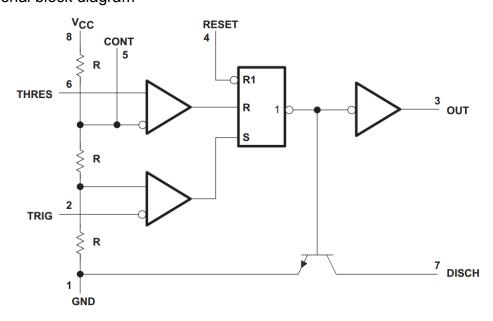
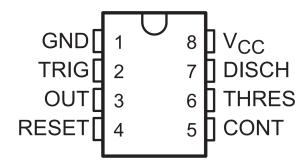
GENERAL PURPOSE TIMERS

DESCRIPTION


NE555 is a general purpose timer. It is an analog integrated circuit that combines analog signals with logic functions. It can time generate precise delays oscillations. This timing circuit can be applied to many aspects such as electronic control, electronic detection and electronic alarm. For example: it can constitute an accurate timer, pulse generator, time delay generator, pulse width modulation, phase modulation and sawtooth voltage generator, etc. In the peripheral equipment of a microcomputer, it can be used to constitute a clock generator to generate the required clock pulse.

FEATURES


- The static current is small, the typical value is 2.7mA.
- The chip disable input can make the IC power down
- The static current is small when power is off, the typical value is 65uA.
- Can drive a variety of impedance speakers more than 8 Ω
- When using a 32 Ω load, the output power exceeds 250mW
- Low distortion 0.5% TYP.
- In the voice band, the gain can be adjusted from 0dB to 46dB
- Fewer peripheral components
- Package SOP8/DIP8

Functional block diagram and pin description

1.1 Functional block diagram

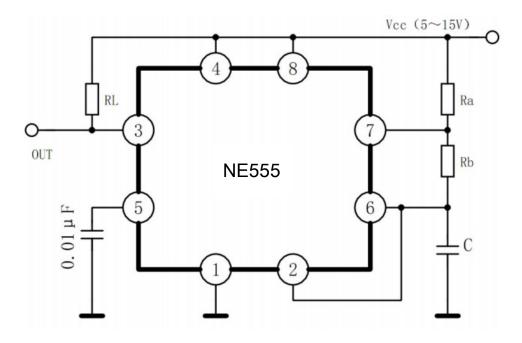
1.2 Pin description

ELECTRICAL CHARACTERISTICS

2.1 Absolute maximum ratings over operating free-air temperature range

PARAMETER	SYMBOL	VALUE	UNITS
Supply voltage	VCC	18	V
Power consumption (DIP)	PD	600	mW
Operating free-air temperature range	Tamb	0 ~ 70	°C
Storage temperature range	Tstg	-65 ~ 150	°C

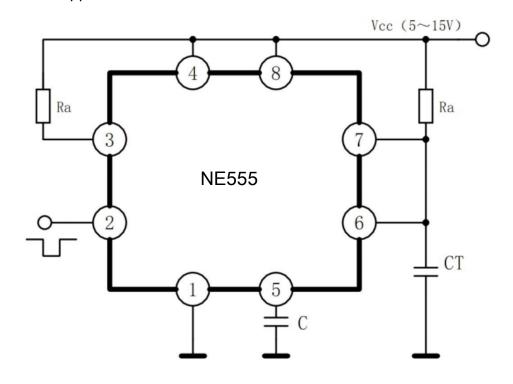
2. 2 Electrical characteristics ,Tamb= 25°C(unless otherwise noted)

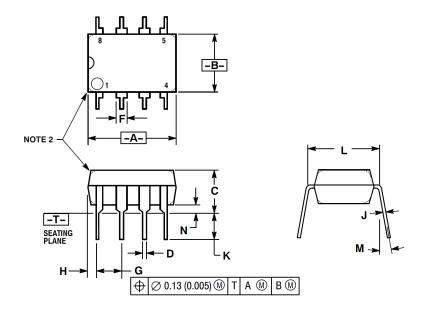

DADAMETED	0)//APDOL	TEST CONDITIONS	VALUE			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Supply current	1000	VCC=5V RL = ∞		3	6	mA
	ICCQ	VCC=15V RL= ∞		10	15	
Supply voltage	VCC		4.5		16	V
THRES voltage level	VTH			0.667*Vcc		V
THRES current	ITH			0.1	0.25	Α
TDIO contra con laccal	VTD	VCC=15V		5		V
TRIG voltage level	VTR	VCC=5V		1.67		
TRIG current	ITR			0.5	2	uA
RESET voltage level	VR		0.4	0.5	1	V
RESET current	IR			0.1	0.4	mA
CONT voltage	VCON	VCC=15V	9	10	11	V
	VCON	VCC=5V	2.6	3.33	4	

NE555

				1		
DISCH switch off-state current	I7(IEAK)	High-level output		20	100	nA
		Low-level output		400		
DISCH saturation) (7(0 A T)	VCC 15V I7 = 15mA		180		
pressure drop	V7(SAT)	Low-level output		90	200	mV
		VCC= 4.5V I7 = 4.5mA		80	200	
High-level output		VCC= 15V IS = 200mA		12.5		
voltage	VOH	VCC= 15V IS = 100mA	12.75	13.3		V
voltage		VCC = 5V IS = 100mA	2.75	3.3		
		VCC=15V		0.1	0.25	
		ISINK=10mA		0.1	0.25	
		VCC=15V		0.4	0.75	
Low-level output		ISINK=50mA		0.4	0.70	
voltage	VOL	VCC=15V		2	2.5	V
vollago		ISINK=100mA		_	2.0	-
		VCC=15V		2.5		
		ISINK=200mA			.5	
		VCC=5V ISINK=5mA		0.25	0.35	
Output rise time	tr			100		nS
Output fall time	tf			100		
Initial accuracy	ΔtE			1		%
Rate of change						
with temperature	ΔtT	Monostable		50		ppm/°C
drift		RA.RB=1~100k				
Rate of change	ΔtV	C=0.1 uF		0.1		%/V
with voltage drift		VCC= 5V(15V)				
Accuracy within	4:05					24
operating	ΔtOPr			1.5		%
temperature range	A 15 4			0.05		0/
Initial accuracy	ΔtE1	-		2.25		%
Rate of change	A 1T 4			450		
with temperature	ΔtT1	Astable		150		ppm/°C
drift Pate of change		RA.RB=1~100k				
Rate of change	ΔtV1	C=0.1 uF		0.3		%/V
with voltage drift		Vcc= 5V(15V)				
Accuracy within operating	ΔtOpr1			3		%
temperature range	ΔιΟρι ι			3		/0
temperature range						

APPLICATION CIRCUIT AND APPLICATION INSTRUCTIONS

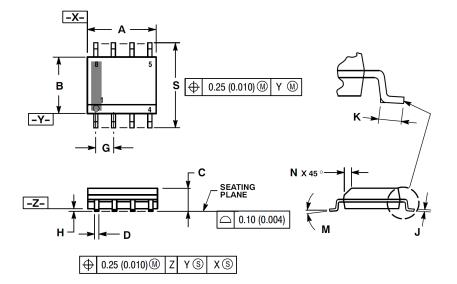

3.1 Oscillator application circuit


Oscillation period:T=0.693(R_A+2R_B)C

Duty:D= $R_B/(R_A+2R_B)$

3. 2 Monostable application circuit

MECHANICAL DIMENSIONS



- DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 PACKAGE CONTOUR OPTIONAL (ROUND OR
- SQUARE CORNERS).

 3. DIMENSIONING AND TOLERANCING PER ANSI

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.40	10.16	0.370	0.400	
В	6.10	6.60	0.240	0.260	
С	3.94	4.45	0.155	0.175	
D	0.38	0.51	0.015	0.020	
F	1.02	1.78	0.040	0.070	
G	2.54 BSC		0.100	BSC	
H	0.76	1.27	0.030	0.050	
_	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300	BSC	
M		10°		10°	
N	0.76	1.01	0.030	0.040	

DIP8

SOP8

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

5