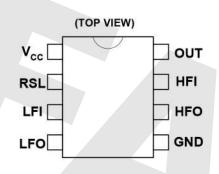


THE **KA2411** IS A BIPOLAR INTEGRATED CIRCUIT DESIGNED FOR TELEPHONE TONE RINGER.THESE DEVICES CONSISTS OF AN OUTPUT AMPLIFIER, TWO OSCILLATORS, AND POWER SUPPLY CONTROL CIRCUIT.

FEATURES

- Low current drain
- Adjustable 2 tone frequency
- Hysteresis circuit prevents false triggering and rotary dial "CHIRPS"
- 8 pin DIP plastic package
- Adjustable for reduced supply initiation current

8-pin DIP


APPLICATIONS

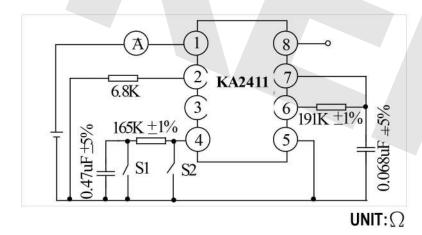
- Telephone bell replacement
- · Extension tone ringer modules
- Alarms or other alerting devices

PIN CONFIGURATION

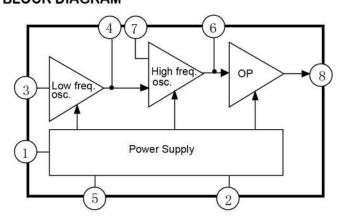
PIN ASSIGNMENT

PIN	NAME	FUNCTION	
1	V _{cc}	Power Supply	
2	RSL	Resistor Select	
3	LFI	Low freq. osc. Input	
4	LFO	Low freq. osc. Output	
5	GND	Ground	
6	HFO	High freq. osc. Output	
7	HFI	High freq. osc. Input	
8	OUT	Output	

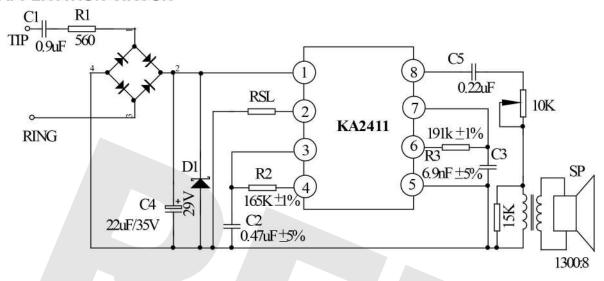
ABSOLUTE MAXIMUM RATINGS

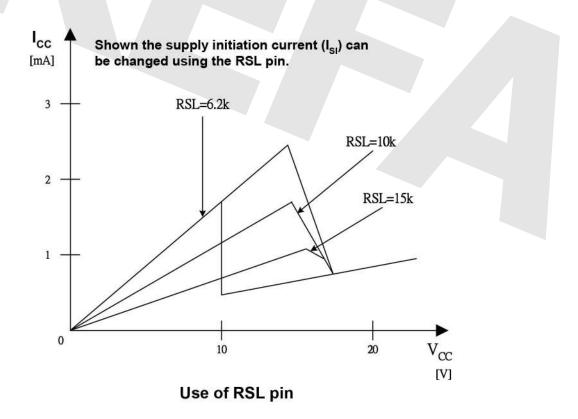

Voltage values are with respect to the anode terminal unless otherwise noted

PARAMETER	SYMBOL	RATING	UNITS	
DC Supply Voltage	V _{cc}	30	V	
Power Dissipation	P_{D}	450	mW	
Operating Ambient Temperature Range	T _A	-45~+65	°C	
Storage Temperature Range	T _{STG}	-65~+150		


ELECTRICAL CHARATERISTICS (V_{cc} =24V, T_A =25 $^{\circ}$ C, UNLESS OTHERWISE NOTED)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage	V _{cc}				29	
Supply Initiation Voltage	V _{SI}		17	19	21	V
Current	I _{SI}	V _{CC} =V _{SI} , No load	1.4	3.3	4.2	mA
Sustaining Voltage	V _{SUS}	389901 839737	10.5	12	13.5	V
Current	I _{sus}	V _{CC} =V _{SUS} , No load	0.4	0.9	2.0	mA
Oscillator Freq.	f _L	R1=165kΩ, C1=0.47μf	9	10	11	Hz
Oscillator Freq.	f _{H1}	R2=191kΩ, C2=6800pF	365	410	455	Hz
Oscillator Freq.	f _{H2}	R2=191kΩ, C2=6800pF	460	510	560	Hz
Output		V _{cc} =21V				
High Voltage	V _{OH}	I _{OH} =-15mA	17	19	21	V
Low Voltage	V _{OL}	I _{OL} =15mA	0.7	1	2]


TEST CIRCUIT



BLOCK DIAGRAM

APPLICATION CIRCUIT

